DIT376 Python for data science, 7.5 credits
Python för data science, 7,5 högskolepoäng
Second Cycle

Confirmation
This course syllabus was confirmed by Department of Computer Science and Engineering on 2022-11-15 to be valid from 2023-08-28, autumn semester of 2023.

Field of education: Science 100%
Department: Department of Computer Science and Engineering

Position in the educational system
The course can be part of the following programme: 1) Applied Data Science Master's Programme (N2ADS)

Main field of studies Specialization
Computer Science A1N, Second cycle, has only first-cycle course/s as entry requirements
Data Science A1N, Second cycle, has only first-cycle course/s as entry requirements

Entry requirements
To be eligible in the course, the student needs a bachelor degree. Furthermore, the student needs 7.5 hec programming.

Applicants must prove knowledge of English: English 6/English B or the equivalent level of an internationally recognized test, for example TOEFL, IELTS.

Learning outcomes
On successful completion of the course the student will be able to:

The course is a combination of a continuation course in programming, object oriented programming, data structures, foremost from the perspective of data science, including
a short orientation about algorithms and algorithm design principles. The language in this course is Python which is the most common language in the area of data science. The course provides a good foundation for further studies in the area of data science.

Knowledge and understanding

- explain the basics about classes and objects;
- explain some basic abstract data types and data structures, including lists, queues, hash tables, trees and graphs;
- explain some of the algorithms used to manipulate and query these data structures in an efficient way, for example for sorting and searching, and being able to use the respective standard libraries in Python.

Competence and skills

- make efficient use of predefined data structures in Python;
- construct simple programs using classes and objects;
- use a standard library of data structures and algorithms in Python for solving tasks within the area of data science.

Judgement and approach

- compare and value different aspects of program structures;
- analyse the efficiency of different algorithms, for example searching and sorting algorithms;
- make informed choices between different data structures and algorithms for different applications, in particular those relevant for data science.

Course content

The course covers the following topics:

- basic data types in Python,
- basic constructs of programming language such as expressions and control structures,
- Object oriented design in Python and basic object oriented programming including examples from the area of data science,
- common data structures such as arrays, lists, and hash tables,
- stacks, queues, priority queues, maps, sets, trees and graphs,
- standard algorithms for these data structures, including their resource demands,
- searching and sorting,
- asymptotic efficiency and simple complexity analysis,
- standard libraries for data structures and algorithms, in particular those that are relevant from a data science perspective,
- an orientation about algorithms and algorithm design principles
Sub-courses

1. Assignments (*Inlämningsuppgifter*), 7.5 credits
 Grading scale: Pass (G) and Fail (U)

Form of teaching
Lectures and programming assignments

Language of instruction: English

Assessment
Compulsory programming assignments (both individual assignments and assignments done in groups).

If a student, who has failed the same examined element on two occasions, wishes to change examiner before the next examination session, such a request is to be submitted to the department in writing and granted unless there are special reasons to the contrary (Chapter 6, Section 22 of Higher Education Ordinance).

In the event that a course has ceased or undergone major changes, students are to be guaranteed at least three examination sessions (including the ordinary examination session) over a period of at least one year, though at most two years after the course has ceased/been changed. The same applies to work experience and VFU, although this is restricted to just one additional examination session.

Grades
The grading scale comprises: Pass (G) and Fail (U).
A passing grade for the entire course requires at least a passing grade for all assignments.

Course evaluation
The course is evaluated through meetings both during and after the course between teachers and student representatives. Further, an anonymous questionnaire is used to ensure written information. The outcome of the evaluations serves to improve the course by indicating which parts could be added, improved, changed or removed.

The results of and possible changes to the course will be shared with students who participated in the evaluation and students who are starting the course.
Additional information

Course literature to be announced the latest 8 weeks prior to the start of the course.
The course replaces the course DIT375, 7.5 credits. The course cannot be included in a
degree which contains DIT375. Neither can the course be included in a degree which is
based on another degree in which the course DIT375 is included.