
•

•
•

Confirmation
This course syllabus was confirmed by The IT Faculty Board on 2009-09-19 and was
last revised on 2017-12-19 by Department of Computer Science and Engineering to be
valid from 2018-08-19, autumn semester of 2018.

Field of education: Science 100%
Department: Department of Computer Science and Engineering

Position in the educational system
The course is offered within several programmes. It is also a single subject course at the
University of Gothenburg.
The course can be part of the following programmes: 1) Computer Science, Master's
Programme (N2COS), 2) Applied Data Science Master's Programme (N2ADS) and 3)
Computer Science, Bachelor´s Programme (N1COS)

Entry requirements
To be eligible to the course, the student should have successfully completed 120 credits
of studies in computer science or equivalent. Specifically, the following courses are
required, or equivalent:

DIT143 Functional Programming, 7.5 credits, or DIT440 Introduction to
Functional Programming, 7.5 credits,
DIT980 Discrete Mathematics for Computer Scientists, 7.5 credits,
DIT231 Programming Language Technology, 7.5 credits.

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

DIT260 Advanced Functional Programming, 7.5 credits
Avancerad funktionell programmering, 7,5 högskolepoäng
Second Cycle

Main field of studies Specialization

Computer Science A1F, Second cycle, has second-cycle
course/s as entry requirements

•

•

•

•

•

•

Applicants must prove knowledge of English: English 6/English B or the equivalent level
of an internationally recognized test, for example TOEFL, IELTS.

Learning outcomes
After completion of the course the student should be able to:

Knowledge and understanding

explain advanced type system features, such as type classes, generalized algebraic
datatypes, functors, monads and monad transformers, and relate them to each other

Competence and skills

design embedded domain specific languages (EDSLs); explain and exemplify their
abstract and concrete syntax and semantics; and implement them in Haskell as
combinator libraries
use specification-based development techniques to formulate and test properties
about programs
reason about the correctness of functional programs, and transform them on the
basis of such reasoning
analyse and extend Haskell programs which use advanced type system features

Judgement and approach

discuss the above topics (i.e., type system features, EDSLs, specification-based
techniques and correctness), and how they relate to each other

Course content
The aim of the course is to explore the powerful mechanisms that functional
programming languages offer to solve real problems and structure larger programs. The
focus lies on library design and the concept of embedded languages.
The big advantage with functional languages is that language constructions can be given
names and thereby reused, using higher order functions. Functional programs can
therefore often be constructed by composing constructions from a library. This method
enables a way to construct programs quickly and with a high degree of correctness. This
is the central idea in this course.
We can learn a lot from studying the standard library of list functions such as map, fold
and so on. These functions can be generalised to operate on other datatypes.
Realistic functional programs must also handle changes in state, exceptions,
backtracking and other "non-functional" behaviours. We will look at how these can be
modelled in a purely functional manner. The concept of "monads" will help us here.

42/

DIT260 Advanced Functional Programming, 7.5 credits / Avancerad funktionell programmering, 7,5
högskolepoäng
Second Cycle

Armed with this knowledge we will construct domain specific libraries, designed to
construct programs in a certain application domain. This type of library can be said to
define a domain specific language, since the constructions the programmer uses to
construct larger programs mainly consists of library functions. We will study libraries
for parsing, pretty printing, graphics, pseudo-parallel programming and interaction. The
course will also present some recent research which can make the contents of the course
vary to some degree. The programming language used in the course is Haskell.

Sub-courses

Form of teaching
Lectures, laborations, supervision and self-studies. The students are expected to do a lot
of independent programming and self-study.
Language of instruction: English

Assessment
The course is examined by 2-3 programming laborations (U-VG) normally done in pairs
during the course, and an individual exam (U-VG) given in an examination hall at the
end.
If a student, who has failed the same examined component twice, wishes to change
examiner before the next examination, a written application shall be sent to the
department responsible for the course and shall be granted unless there are special
reasons to the contrary (Chapter 6, Section 22 of Higher Education Ordinance).
In cases where a course has been discontinued or has undergone major changes, the
student shall normally be guaranteed at least three examination occasions (including the
ordinary examination) during a period of at least one year from the last time the course
was given.

Grades
The grading scale comprises: Pass with Distinction (VG), Pass (G) and Fail (U).
A Pass grade (G) for the entire course requires at least a Pass grade for all sub-courses.
The final grade of the full course is based 60% on the result of the laborations and 40%
on the result of the written examination.

1. Written examination (Skriftlig tentamen), 3 higher education credits
Grading scale: Pass with Distinction (VG), Pass (G) and Fail (U)

2. Laboratory work (Laboration), 4.5 higher education credits
Grading scale: Pass with Distinction (VG), Pass (G) and Fail (U)

43/

DIT260 Advanced Functional Programming, 7.5 credits / Avancerad funktionell programmering, 7,5
högskolepoäng
Second Cycle

Course evaluation
The course is evaluated through meeting after the course between teachers and student
representatives. Further, an anonymous questionnaire is used to ensure written
information. The outcome of the evaluations serves to improve the course by indicating
which parts could be added, improved, changed or removed.

Additional information
The course is a joint course together with Chalmers.
Course literature to be announced the latest 8 weeks prior to the start of the course.
It is recommended, but not required, to read the following courses beforehand: DIT602
Algorithms, and one of DIT201 Logic in Computer Science or DIT321 Finite Automata
Theory and Formal Languages.

44/

DIT260 Advanced Functional Programming, 7.5 credits / Avancerad funktionell programmering, 7,5
högskolepoäng
Second Cycle

	Confirmation
	This course syllabus was confirmed by The IT Faculty Board on 2009-09-19 and was last revised on 2017-12-19 by Department of Computer Science and Engineering to be valid from 2018-08-19, autumn semester of 2018.
	
Field of education: Science 100%
	Department: Department of Computer Science and Engineering

	Position in the educational system
	

	Entry requirements
	

	Learning outcomes
	Course content
	Form of teaching
	Assessment
	Grades
	The grading scale comprises: Pass with Distinction (VG), Pass (G) and Fail (U).

	Course evaluation
	Additional information

