

# DEPARTMENT OF MATHEMATICAL SCIENCES

# MSF500 Weak Convergence, 7.5 higher education credits

Svag konvergens, 7,5 högskolepoäng Second Cycle

## Confirmation

The course syllabus was confirmed by Department of Mathematical Sciences on 2014-07-04 to be valid from 2014-07-04, autumn semester of 2014.

*Field of education:* Science 100% *Department:* Department of Mathematical Sciences

## Position in the educational system

The course is a specialization course in mathematical statistics in the master program in mathematical sciences.

The course is part of the following programme: 1) Mathematical Sciences, Master's Programme

| Main field of studies   | Specialization                      |
|-------------------------|-------------------------------------|
| Mathematical Statistics | A1F, Second cycle, has second-cycle |
|                         | course/s as entry requirements      |

#### **Entry requirements**

The prerequisite for the course is the equivalent of the courses MSA150 Foundations of probability theory and MMA110 Integration theory.

#### Learning outcomes

After having taken the course, one should be able to

- explain the details of the proofs of the main theorems given in the compendium,
- solve exercises given in the compendium,

- demonstrate understanding of the key concepts and ideas concerning the weak convergence of probability measures.

#### **Course content**

This course deals with weak convergence of probability measures on Polish spaces. Here the principal examples of Polish spaces are the space C = C[0, 1] of continuous trajectories and the space D = D[0, 1] of cadlag trajectories. Main topics:

- Portmanteau and mapping theorems
- Tightness and Prokhorov theorem
- Functional central limit theorems on C and D
- Empirical distribution functions and the Brownian bridge
- Weak convergence on D[0, infinity)

#### Form of teaching

The teaching is organized with lectures and reading assignments.

Language of instruction: English

#### Assessment

Oral and/or written examination.

#### Grades

The grading scale comprises: Pass with Distinction (VG), Pass (G) and Fail (U).

#### **Course evaluation**

Oral and/or written course evaluation will be performed. The results of the evaluation will be communicated to the students and will serve as a guide for the development of the course.