
Confirmation
This course syllabus was confirmed by The IT Faculty Board on 2012-02-22 and was
last revised on 2017-06-16 by Department of Computer Science and Engineering to be
valid from 2017-08-20, autumn semester of 2017.

Field of education: Science 100%
Department: Computer Science and Engineering

Position in the educational system
The course is a part of the Computer Science Master's Programme and a single subject
course at the University of Gothenburg
The course can be part of the following programmes: 1) Computer Science, Master's
Programme (N2COS) and 2) Applied Data Science Master's Programme (N2ADS)

Entry requirements
The requirement for the course is to have successfully completed two years within the
subject Computer Science or equivalent. The course participants must have completed
an introductory course in Functional Programming, preferably using Haskell or Erlang
(Examples at GU are DIT440 Introduction to Functional Programming and DIT142
Functional Programming).

Applicants must prove knowledge of English: English 6/English B or the equivalent level
of an internationally recognized test, for example TOEFL, IELTS.

COMPUTER SCIENCE AND ENGINEERING

DIT261 Parallel Functional Programming, 7.5 credits
Parallell Funktionell Programmering, 7,5 högskolepoäng
Second Cycle

Main field of studies Specialization

Computer Science-Algorithms and Logic A1F, Second cycle, has second-cycle
course/s as entry requirements

Learning outcomes
After completion of the course the student is expected to be albe to:

1. Knowledge and understanding
- Distinguish between concurrency and parallelism.
- Give an overview of approaches to parallelism in functional programming languages in
the scientific literature.

2. Skills and abilities
- Write, modify and test parallel functional programs, to run on a variety of
architectures such as shared memory multiprocessors, networks of commodity servers,
and GPUs.
- Interpret parallelism profiles and address bottlenecks.

3. Judgement and approach
- Identify when using a functional language may be appropriate for solving a parallel
programming problem.
- Select an appropriate form of parallel functional programming for a given problem,
and explain the choice.

Course content
The course introduce the principles and practice of parallel programming in a functional
programming language. In this course, the term paralle programming means using
multiple hardware cores of processors in order to gain speed. The course covers
approaches to parallel fuctional programming in both Haskell and Erlang. It covers
curret research on these topics, and relies heavily on scientific papers as its source
materials.

- Advantages of functional approaches to parallelism: immutability, absence of
data races, determinism.
- Profiling parallel functional programs: granularity, bottlenecks, locality, data-
dependencies.
- Parallel functional algorithms: divide-and-conquer.

42/

DIT261 Parallel Functional Programming, 7.5 credits / Parallell Funktionell Programmering, 7,5
högskolepoäng
Second Cycle

- Approaches to expressing parallelism in Haskell: the Eval monad, the Par monad,
parallel strategies, skeletons, data parallelism.
- Functional approaches to GPU programming
- Parallelisation and distribution for Erlang. Scalability. Handling errors in a
massively parallel system.
- Case studies of industrial parallel functional programming, such as map-reduce
and scalable no-SQL databases.

Form of teaching
Language of instruction: English

Assessment
An individual written examination taken in an examination hall and two compulsory
laboratory exercises. The laboratory exercises are normally done in groups of 2.

A student who has failed the examination twice has the right to request of the
department a change of examiner. The request is to be in writing and submitted as soon
as possible. The department is to grant such a request without delay.

In cases where a course has been discontinued or major changes have been made a
student should be guaranteed at least three examination occasions (including the
ordinary examination occasion) during a time of at least one year from the last time the
course was given.

Grades
The grading scale comprises: Pass with Distinction (VG), Pass (G) and Fail (U).
In order to be awarded a Pass (G) for a full course, the laboatory assignments must be
approved and a passing mark must be obtained in the written exam. To be awarded Pass
with Distinction (VG), the student must receive a VG in the written exam and the
laboratory assignments must be approved.

Course evaluation
The course is evaluated through meetings both during and after the course between
teachers and student representatives. Further, an anonymous questionnaire can be used

43/

DIT261 Parallel Functional Programming, 7.5 credits / Parallell Funktionell Programmering, 7,5
högskolepoäng
Second Cycle

to ensure written information. The outcome of the evaluations serves to improve the
course by indicating which parts could be added, improved, changed or removed.

44/

DIT261 Parallel Functional Programming, 7.5 credits / Parallell Funktionell Programmering, 7,5
högskolepoäng
Second Cycle

	Confirmation
	This course syllabus was confirmed by The IT Faculty Board on 2012-02-22 and was last revised on 2017-06-16 by Department of Computer Science and Engineering to be valid from 2017-08-20, autumn semester of 2017.
	
Field of education: Science 100%
	Department: Computer Science and Engineering

	Position in the educational system
	

	Entry requirements
	

	Learning outcomes
	Course content
	Form of teaching
	Assessment
	Grades
	The grading scale comprises: Pass with Distinction (VG), Pass (G) and Fail (U).

	Course evaluation

